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Abstract. — A discrete harmonic (DH) model has been developed which describes the static
structure factor of stacked membranes. The (DH) model was used to analyze a synchrotron
small-angle X-ray scattering study in stacked membranes. We studied lyotropic lamellar Lo
phase samples in a quaternary mixture consisting of thin water layers coated with surfactant
sodium dodecyl sulfate (SDS) and cosurfactant (pentanol) molecules, separated by oil. The
experiments on highly oriented L, phase samples covered a large interlayer spacing range from
d = 49.1 to 255.8 A produced by dodecane dilution, which considerably exceeded those of
previous high resolution synchrotron scattering studies of powder samples. Two significant
differences emerge between the (DH) model and the continuum Caillé model description of
smectic-A liquid crystals and multilayer membranes. First, whereas the continuum model is
necessarily restricted to the vicinity of the Bragg peaks of the structure factor, the discrete nature
of the (DH) model allowed us to fit the experimentally measured X-ray structure factor over the
full range of wave-vectors and dilutions. This enabled measurements of the membrane bending
and multilayer compressibility elastic constants « and B separately, in contrast to the continuum
model which gives a reliable measurement of the product xB. Second, the (DH) model is able to
account for the universally observed anomalously large small angle scattering (SAS) in strongly
fluctuating dilute fluid multilayer membranes. The (SAS) is shown to contain contributions
both due to concentration fluctuations described previously by Porte et al. and Nallet et al.,
and unexpectedly from a divergent thermal-coherent diffraction effect which dominates in single
crystal multilayers.

The physical properties of fluid membranes are of great importance for cell biology, but mem-
branes also form a multitude of interesting phases whose study has been the subject of consider-
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able recent interest, in particular, concerning the role of thermal fluctuations [1,2]. Membranes,
which are comprised of bilayer sheets of surfactant molecules, can at low surfactant concen-
trations fluctuate over a range of geometries such as those encountered in the bicontinuous
sponge-like structure of the Ly phase [3]. In the vicinity of the Lz phase, one usunally encoun-
ters very dilute but more organized phases which are readily accessible to structural probes.
Of particular interest are the membrane fluctuations in the L, phase which we focus on in this
paper. )

The L, phase is a regularly spaced stack of fluid bilayers separated by solvent, as shown
in Figure 1. From a symmetry view point, the L, phase can be considered as a smectic-A
(SmA) liquid crystal. Diffraction experiments studying the thermal diffuse scattering (TDS)
around the quasi-Bragg peaks of unoriented powder samples [4,5] confirm that the power-law
line-shapes of L, phase materials are well described by the classical Caillé model of Sm-A liquid
crystals, which arises from layer undulations around the one-dimensional stacking order [6].

However, high resolution X-ray synchrotron [4,5] and neutron [7,8] scattering measurements
showed that there is also a central peak small-angle-scattering (SAS) around the origin in
reciprocal space which had not been observed in studies of SmA materials [9,10]. Porte et al. [7]
suggested that the central peak (SAS) is a specific signature of the L, phase and that it is due
to the increase of incoherent layer fluctuations as the layers are separated under dilution. Nallet
et al. [8], proposed a continuum theory of the L, phase, treating the surfactant concentration
as a second variable to include incoherent fluctuations. They predicted a non-divergent central
peak with a Lorentzian line shape.

To understand the precise nature of the central peak (SAS) and the extensive scattering
observed between the origin and the first Bragg peak in these strongly fluctuating membrane
systems, we decided to begin with a harmonic model description of a stack of membranes as
done previously by Caillé [6], but with the important difference of retaining the discrete nature
of the system arising from alternating membrane and solvent layers. Within the harmonic
approximation, the discrete model gives a description of the static structure factor over the
entire wave-vector range between the central peak (SAS) and the first Bragg peak position,
and extending to the larger wave-vector range after the first peak. A similar discrete harmonic
Hamiltonian has been considered previously by Holyst et al. for analyzing X-ray reflectivity
from freely suspended smectic-A films [11]. However, they only considered the root-mean-
square roughness of a smectic layer and not the full (r-dependent) height-height correlation
function needed for the calculation of the complete static X-ray structure factor as we describe
later. Ramaswamy et al. have also considered a similar Hamiltonian in their description of the
dynamics of lyotropic lamellar phases [12].

Concurrent with the modeling work, we used the recently developed technique of producing
highly oriented lamellar membrane samples [7,8], to carry out a detailed high resolution small-
angle X-ray scattering study. The quaternary mixtures we studied were highly oriented L,
phase samples consisting of thin water layers coated with surfactant sodium dodecyl sulfate
(SDS) and cosurfactant (pentanol) molecules, separated by dodecane (top of Fig. 1). The
experiments were carried out at the National Synchrotron Light Source (NSLS) at Brookhaven
on beam line X-10A. We used a double bounce Ge(111) monochromator and a triple bounce
Ge(111) analyzer crystal set at 8 keV to obtain a longitudinal resolution of Agq, = 0.00016 A~!
(HWHM). Tight slits set the out-of-plane resolution at Ag, = 0.003 A-! (HWHM). The
experiments explored a large interlayer spacing range of the L, phase produced by dodecane
dilution which considerably exceeded those of previous high resolution synchrotron scattering
studies [4,5]. Twelve mixtures were studied with the dodecane weight fraction & varying
between 0.18 and 0.74, which corresponds to the interlayer spacing increasing from d = 49.1
to 255.8 A for a membrane thickness § = 37 A. The samples were sealed in thin rectangular
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Fig. 1. — Top: Schematic of the multilayer membrane (consisting of water coated with surfactant

and cosurfactant) L, phase with the layers separated by dodecane. Bottom: a) — d): Longitudinal
profiles of four mixtures as a function of increasing interlayer spacing (d) resulting from increasing
weight fractions of dodecane (% shown in Figure) in the L, phase covering the small angle and first
harmonic wave vector range. Note the dramatic onset of the central peak (centered around q = 0) as
d increases in very dilute membranes. The solid lines are fits to the structure factor (Eq. (2)) resulting
from the discrete harmonic model Hamiltonian discussed in the text which gave the parameters m
and £. The mosaic distribution M (HWHM in radians) and the finite size parameters N (number of
layers) and the aspect ratio r = Nd/R of the samples were: a) M = 0.027, N = 500, » = 0.09; b)
M =0.13, N = 2000, »r = 0.07; ¢c) M = 0.2, N = 1800, r = 0.074; d) M = 1.8, N =90, r = 0.03. It
should be noted here that for low-dimensional systems described by power-law correlations [1,4,5,9],
the width of the Bragg peak is normally controlled to a large extent by the exponent 1, when n = 1,
and not by N.
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capillaries (50 x 2 x 0.2 mm?) and heat treated. This sample preparation technique {7, 8]
resulted in highly oriented lamellar domains with very few defects as verified by polarized light
microscopy.

Figure 1 shows the measured X-ray structure factor for oriented L, samples at increasing
levels of dilution. The position of the first Bragg peak at 27/d, shifts to lower wave-vectors as
the layer spacing d increases with increasing dodecane dilution. In Figure 1a (lowest dilution)
no central peak (SAS) is visible; in Figure 1b, the first Bragg peak develops asymmetry due
to increased small-angle scattering while in Figure 1c the central peak (SAS) grows and finally
practically overwhelms the Bragg peak (Fig. 1d).

To interpret these results, we computed the structure factor of the following discrete-harmonic
(DH) model Hamiltonian for layer-height fluctuations:

2H =} / & (k((9 2 + 0 y)ui(r)) + B/d(uiri (v) = uilr))?) 1)

Here, u;(r) is the undulation displacement of layer i along the z-direction normal to the layers,
at a position r in the (z,y) plane. To allow for finite-size effects, we extended the integral
only over a disk of radius R and restricted the layer index to i = 1,2,.....,N. The first
term in equation (1) is the Helfrich curvature energy (with bending modulus &) for symmetric
surfactant bilayers [13]. The inter-layer interaction is given by the second term which represents
a harmonic restoring potential for the interlayer spacing. B is the interlayer compressibility
modulus. Albeit in harmonic form, H allows for both coherent height fluctuations, with u;(r)
slowly varying with i, as well as incoherent fluctuations, with no correlation between u;(r)’s
with different index.

The X-ray scattering cross-section is proportional to the product of a single-layer form fac-
tor [14] and the structure factor:

33"

For a circular sample of radius R with NV layers, this reduces to:

S(@) = 4rR* > (N-|j|)cos(jg.d)
j=—N,+N

X /2R rdrJo(qyT) (cos_l(r/2R) — (r/2R) [1 — (r/zR)Q]l/z) e~ 1Gi(r)/2 (3)
0

with G;(r) =< (u;(r) —ue(0))? > — the height-height correlation function of the DH model in
terms of the parameters 7; and ¢ [15]. The dimensionless parameter 7 = ¢*kpT /87 (kB /d)'/?
determines the power-law line shape in the Caillé continuum theory [6]. 7, is defined to be
the value of 7 at the n'* order Bragg peak ¢. = n27w/d. The parameter ¢ = (kd/B)/*,
is a correlation length for the fluctuations. For distances greater than £, membrane height
fluctuations are coherent from layer to layer while for distances less then £, fluctuations are
single-layer and incoherent [13]. Numerically computed S{q)’s were then fitted to the data
with N, R,d,m and ¢ as fitting parameters. The final structure factor was summed over the
sample mosaic distribution which was measured through a standard crystallographic rocking
curve. As we mentioned earlier, the same discrete Hamiltonian has been previously employed
to calculate the height-squared function < u;(r)? > of freely suspended single crystal smectic
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Fig. 2. — Plots of the main parameters (involving the L, elasticities) £ and 1 resulting from fits of

the data in the lamellar L, phase to the structure factor of equation (3). a) The measured length scale
¢ = (rd/B)"/* plotted versus the interlayer spacing d. The prediction £ = (1.39)7*/4(d — §)(x/ksT)*/?
of the Helfrich theory is shown as a straight line with x/kg7T = 2.6; b) the power-law exponent 7;. In
the Helfrich theory, (1:/1.33)"/2 = 1 — §/d, which gives a membrane thickness § = 37 A. Following
the definition of 1, described in the text, the compressibility elastic constant softens over the dilution
range as d increases from 49.1 A to 255.8 A with B = (7% /4n})(ksT/x)(ksT/d®).

films [11]. However, the full (r-dependent) correlation function G;(r) described here is needed
for analyzing the X-ray structure factor of oriented multilayers with a finite sample mosaic.

The solid lines through the data of Figure 1 result from fits of equation (3) convoluted with
the instrumental resolution, to the data. [t is immediately clear that the DH model gives a
surprisingly good account of the data for all dilution levels and over the full range of wave-
vectors and in particular of the central peak (SAS) scattering. All previous X-ray analysis had
been restricted to the line-shape around the Bragg peaks [4,5]. The 5 value at the first Bragg
peak, 71, is indicated in Figure 1. These data actually represent the first reliable measurement
of the £ parameter — and thus of the bending rigidity x — in L, phase materials by analysis
of the scattering profile over the entire wave-vector range. Previous line-shape analysis [4, 5]
based on the continuum Caillé model [6], which were necessarily restricted to the vicinity of
the Bragg peaks, only gave an accurate measurement of the power-law exponent of the Bragg
peaks 7,. The discrete model allows us to fit over the full range of wave-vectors which leads to a
measurement of both fitting parameters 1, and £. This, in turn, allows us to measure the elastic
constants xk and B separately. We plotted £ versus d in Figure 2a and the results are consistent
with the theoretical prediction ¢ = (1.39)7*/4(d — &)(k/kpT)'/? of the Helfrich theory [16]
with k/kgT = 2.6. Similarly, Figure 2b is consistent with the expected d-dependence of the
exponent 7; = 1.33(1 — §/d)? when the interlayer interactions are dominated by the so-called
Helfrich undulation forces [13], as earlier studies had shown [4,5,7]. Thus, it follows from the
definition of ; that the compressibility elastic constant over the dilution range from d = 49.1 A
to d = 255.8 A softens as B = (n2/4n?)(ksT/k)(ksT/d?). The success of the DH model shows
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Fig. 3. — Scaling behavior of the numerically computed single crystal structure factor S(g,) of the
DH model as a function of wave vector g, for three different values of 1. In each case N = 2000,
d=100 A, £ =100 A and we chose three different values for the sample radius R (R/Nd = 2.2, 9.0,
and 35.8 for the solid line, crosses, and squares, respectively). Classical TDS theory predicts that the
three sets should collapse on a single curve if we plot the ratio S(q,)/R? vs. ¢.. The three curves
collapse however only for g, values for which n > 1. For smaller g., S(g.) increases more rapidly with
R than R®.

that, at least for the present system, dilution of the L, phase does not introduce significant
local L3 type geometrical disorder in the stacking sequence.

Since the DH model can account for the data including the central peak (SAS), we can study
it to better understand the origin of the central peak. To that purpose we show in Figure 3 the
structure factor of the DH model for the case of a perfect single crystal with typical parameter
values. For conventional continuum TDS, as well as for the Nallet et al. model, the structure
factor is always proportional to the scattering volume NR?, away from the immediate vicinity
of the Bragg peak positions. In Figure 3 we plot S(q.)/R? versus q, for three different R
values, so the results should have collapsed onto a single curve. The expected “R?” scaling is
only found for # roughly greater than one. Over the whole range of g, values for which 7 is
less than one — including the central peak — the structure factor of the DH model clearly does
not scale as NR?. This surprising result is explained as follows. Close to the Bragg peaks it
is possible to evaluate equations (2,3) analytically with the result [17]:

Sa(d)) = Cr(mNR*€*/(¢,d)*™" + Ca(n) R*2€%1 /(¢ d)’* (4)

assuming R? >> N¢2. Here, ¢, = q, —n2w/d for the n'® order Bragg peak while C; and C, are
dimensionless functions of 5 [17]. The first term of equation (4) is the conventional Caillé power
law line-shape with conventional N R? scaling [6]. The second term, which is proportional to
R*~27 rather than R?, appears because of a divergence in the integrals in equations (2,3) for
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n < 1. Bragg peaks for which n < 1 are dominated by the new term and thus should show
1/q? divergencies rather then the Caillé power law. Examination of the numerical results for
the DH model confirms that, for large R, over the whole g, range for which 7 < 1, which
includes the central peak region, the structure factor scales as R*~27/(q.d)?. The first term in
equation (4) produces, in the central peak region, a non-divergent contribution proportional
to NR2kgT/B - consistent with the predictions of Nallet et al. — but this is overwhelmed by
the second term which produces again a R1/q? divergence. As we shall see, this second term is
mostly important at small g, in single crystals and becomes progressively suppressed in mosaic
and powder samples.

The physical origin of the divergent term is easily understood by noting that a stack
of flat layers has a coherent q = 0 Bragg peak with a structure-factor Ss(¢,,q1. = 0)
R*sin*(q,Nd/2)/sin?(q.d/2) exhibiting coherent diffraction oscillations. For ¢, of order 1/Nd,
Ss(gz,q1 = 0) has the usual finite-size Gaussian line shape but for ¢, greater than 1/Nd,
S.(g,q. = 0) is proportional to R*/q?, and in this range it is likely to overwhelm any standard
TDS volume (N R?) scaling. The second term in equation (4) is simply the finite-temperature
analog of Ss(g.) and we will refer to it as the thermal-coherent contribution. We point out that
previous to our work, Gunter et al. had also considered finite size effects but only around the
first Bragg peak position and not over the entire ¢, range [18]. The earlier model calculated the
structure factor using the continuum Caillé model of smectic-A liquid crystals. In the vicinity
of the first peak of the structure factor where the continuum model is valid, the model gave a
similar coherent contribution as the second term in equation (4). In contrast, the DH model
is capable of describing the finite size effects over the entire g, range.

An important consideration regarding the second term in equation(4) has to be noted. The
simple analysis of the (SAS) resulting in this term is valid only because of the finite coherence
of the X-ray source. For a fully coherent beam extending over the entire sample, the second
term produces a central peak which (i) has a strongly diminished small-angle-scattering and
(ii) a speckle pattern at finite q resulting from interference effects between different finite-size
lamellar domains. The diminished (SAS) results because for a coherent source at q = 0, the
radiation emanating from all the finite-size lamellar domains within the sample, scatter in-phase
(or almost in-phase for ¢, << 1/ (finite-domain-size)), and result in a coherent contribution
to the (SAS) which approachs §(q)-like behavior (i.e., diffraction from an infinite sample)
with little tail scattering as the sample volume increases. In the experiments described here,
the X-ray source has a finite longitudinal coherence determined by the longitudinal resolution
function which is of order 5000 A and is smaller than the finite size lamellar domains present
in these highly oriented preparations. This allowed us to use the random phase approximation
in computing the structure factor. We also note that the smallest wave-vector accessed in
the (SAS) regime (Fig. 1b-d) ¢, (> 0.002) was always much larger than the regime ¢, < 1
/{finite-domain-size), where possible X-ray coherence effects may become apparent.

Our result that the central peak and single crystal Bragg peaks with n < 1 should be
dominated by the thermal-coherent term rather than by the Caillé line shape immediately raises
serious problems since there exists a considerable literature of studies for both thermotropic
SmA liquid crystals [9,10] and for L, materials [4,5,7,8] which report Caillé-like line shapes
with 7 < 1 (including the data shown in Fig. 1). The solution to this difficulty is found by
noting that all systems studied to date have been either mosaic [7-10] or powder samples [4,5].
In both cases, the condition ¢; = 0 is not satisfied and the oscillatory factor J,(gi7) in
equations (2,3) tends to suppress the thermal-coherent contribution. Numerical evaluation
of the DH structure factor shows that for mosaic samples the higher order Bragg peaks are
well described by the Caillé line shape and exhibit standard TDS volume N R? scaling. As
the mosaic average is performed over a wider angle, more and more lower order Bragg peaks




1162 JOURNAL DE PHYSIQUE II N°8

return to conventional TDS. However, for reasonable values of the mosaic angle, the central
peak remains dominated by the thermal-coherent diffraction term. If we use the DH model
to fit the experimental data of Fiure 1d and numerically perform the decomposition of the
structure factor to extract the thermal-coherent contribution, then we indeed find that the
central peak is dominated by thermal-coherent diffraction (dotted line in Fig. 1d) while the
first Bragg peaks obey conventional TDS, consistent with previous [4,5,7,8] line-shape analysis
of the Bragg peaks. It should be noted that the width, of the central peak is large compared
to 1/Nd.

In summary, the DH model can describe the observed X-ray scattering cross-section over
the full range of wave vectors for both low and high levels of dilution and it allows direct
measurement of the £ and 7, parameters, or equivalently the L, phase elastic moduli x and B.
Single crystals described by the DH model do not exhibit Caillé line-shapes (for ¢; =0)ifn < 1.
The central peak is due to a non-negligible thermal-coherent contribution superimposed on an
incoherent contribution due to concentration fluctuations. Our results should be relevant for
the X-ray analysis of other well-oriented low-dimensional systems. The reason why the coherent
term was previously neglected can be traced to the use of a generally used Gaussian smoothing
approximation (“Warren approximation”) which facilitates calculation of finite size structure
factors like equations (2,3) but which happens to suppress the coherent contribution [19].
Our results show that the Warren approximation may be deceptive when used to analyze the
structure factor of oriented systems at their lower critical dimension. Finally, because the DH
model is a harmonic model we do not have to consider measure corrections recently considered
in other membrane systems [19]. It would be interesting to study the effect of anharmonic
“measure” corrections to the DH model [20]. Preliminary estimates show that for the samples
studied here they are not important but they must become relevant as we approach the vicinity
of a weakly first order L,-L3s phase boundary.
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